|
|
- # <img src="./logo.png" alt="bn.js" width="160" height="160" />
-
- > BigNum in pure javascript
-
- [![Build Status](https://secure.travis-ci.org/indutny/bn.js.png)](http://travis-ci.org/indutny/bn.js)
-
- ## Install
- `npm install --save bn.js`
-
- ## Usage
-
- ```js
- const BN = require('bn.js');
-
- var a = new BN('dead', 16);
- var b = new BN('101010', 2);
-
- var res = a.add(b);
- console.log(res.toString(10)); // 57047
- ```
-
- **Note**: decimals are not supported in this library.
-
- ## Notation
-
- ### Prefixes
-
- There are several prefixes to instructions that affect the way the work. Here
- is the list of them in the order of appearance in the function name:
-
- * `i` - perform operation in-place, storing the result in the host object (on
- which the method was invoked). Might be used to avoid number allocation costs
- * `u` - unsigned, ignore the sign of operands when performing operation, or
- always return positive value. Second case applies to reduction operations
- like `mod()`. In such cases if the result will be negative - modulo will be
- added to the result to make it positive
-
- ### Postfixes
-
- The only available postfix at the moment is:
-
- * `n` - which means that the argument of the function must be a plain JavaScript
- Number. Decimals are not supported.
-
- ### Examples
-
- * `a.iadd(b)` - perform addition on `a` and `b`, storing the result in `a`
- * `a.umod(b)` - reduce `a` modulo `b`, returning positive value
- * `a.iushln(13)` - shift bits of `a` left by 13
-
- ## Instructions
-
- Prefixes/postfixes are put in parens at the of the line. `endian` - could be
- either `le` (little-endian) or `be` (big-endian).
-
- ### Utilities
-
- * `a.clone()` - clone number
- * `a.toString(base, length)` - convert to base-string and pad with zeroes
- * `a.toNumber()` - convert to Javascript Number (limited to 53 bits)
- * `a.toJSON()` - convert to JSON compatible hex string (alias of `toString(16)`)
- * `a.toArray(endian, length)` - convert to byte `Array`, and optionally zero
- pad to length, throwing if already exceeding
- * `a.toArrayLike(type, endian, length)` - convert to an instance of `type`,
- which must behave like an `Array`
- * `a.toBuffer(endian, length)` - convert to Node.js Buffer (if available). For
- compatibility with browserify and similar tools, use this instead:
- `a.toArrayLike(Buffer, endian, length)`
- * `a.bitLength()` - get number of bits occupied
- * `a.zeroBits()` - return number of less-significant consequent zero bits
- (example: `1010000` has 4 zero bits)
- * `a.byteLength()` - return number of bytes occupied
- * `a.isNeg()` - true if the number is negative
- * `a.isEven()` - no comments
- * `a.isOdd()` - no comments
- * `a.isZero()` - no comments
- * `a.cmp(b)` - compare numbers and return `-1` (a `<` b), `0` (a `==` b), or `1` (a `>` b)
- depending on the comparison result (`ucmp`, `cmpn`)
- * `a.lt(b)` - `a` less than `b` (`n`)
- * `a.lte(b)` - `a` less than or equals `b` (`n`)
- * `a.gt(b)` - `a` greater than `b` (`n`)
- * `a.gte(b)` - `a` greater than or equals `b` (`n`)
- * `a.eq(b)` - `a` equals `b` (`n`)
- * `a.toTwos(width)` - convert to two's complement representation, where `width` is bit width
- * `a.fromTwos(width)` - convert from two's complement representation, where `width` is the bit width
- * `BN.isBN(object)` - returns true if the supplied `object` is a BN.js instance
-
- ### Arithmetics
-
- * `a.neg()` - negate sign (`i`)
- * `a.abs()` - absolute value (`i`)
- * `a.add(b)` - addition (`i`, `n`, `in`)
- * `a.sub(b)` - subtraction (`i`, `n`, `in`)
- * `a.mul(b)` - multiply (`i`, `n`, `in`)
- * `a.sqr()` - square (`i`)
- * `a.pow(b)` - raise `a` to the power of `b`
- * `a.div(b)` - divide (`divn`, `idivn`)
- * `a.mod(b)` - reduct (`u`, `n`) (but no `umodn`)
- * `a.divRound(b)` - rounded division
-
- ### Bit operations
-
- * `a.or(b)` - or (`i`, `u`, `iu`)
- * `a.and(b)` - and (`i`, `u`, `iu`, `andln`) (NOTE: `andln` is going to be replaced
- with `andn` in future)
- * `a.xor(b)` - xor (`i`, `u`, `iu`)
- * `a.setn(b)` - set specified bit to `1`
- * `a.shln(b)` - shift left (`i`, `u`, `iu`)
- * `a.shrn(b)` - shift right (`i`, `u`, `iu`)
- * `a.testn(b)` - test if specified bit is set
- * `a.maskn(b)` - clear bits with indexes higher or equal to `b` (`i`)
- * `a.bincn(b)` - add `1 << b` to the number
- * `a.notn(w)` - not (for the width specified by `w`) (`i`)
-
- ### Reduction
-
- * `a.gcd(b)` - GCD
- * `a.egcd(b)` - Extended GCD results (`{ a: ..., b: ..., gcd: ... }`)
- * `a.invm(b)` - inverse `a` modulo `b`
-
- ## Fast reduction
-
- When doing lots of reductions using the same modulo, it might be beneficial to
- use some tricks: like [Montgomery multiplication][0], or using special algorithm
- for [Mersenne Prime][1].
-
- ### Reduction context
-
- To enable this tricks one should create a reduction context:
-
- ```js
- var red = BN.red(num);
- ```
- where `num` is just a BN instance.
-
- Or:
-
- ```js
- var red = BN.red(primeName);
- ```
-
- Where `primeName` is either of these [Mersenne Primes][1]:
-
- * `'k256'`
- * `'p224'`
- * `'p192'`
- * `'p25519'`
-
- Or:
-
- ```js
- var red = BN.mont(num);
- ```
-
- To reduce numbers with [Montgomery trick][0]. `.mont()` is generally faster than
- `.red(num)`, but slower than `BN.red(primeName)`.
-
- ### Converting numbers
-
- Before performing anything in reduction context - numbers should be converted
- to it. Usually, this means that one should:
-
- * Convert inputs to reducted ones
- * Operate on them in reduction context
- * Convert outputs back from the reduction context
-
- Here is how one may convert numbers to `red`:
-
- ```js
- var redA = a.toRed(red);
- ```
- Where `red` is a reduction context created using instructions above
-
- Here is how to convert them back:
-
- ```js
- var a = redA.fromRed();
- ```
-
- ### Red instructions
-
- Most of the instructions from the very start of this readme have their
- counterparts in red context:
-
- * `a.redAdd(b)`, `a.redIAdd(b)`
- * `a.redSub(b)`, `a.redISub(b)`
- * `a.redShl(num)`
- * `a.redMul(b)`, `a.redIMul(b)`
- * `a.redSqr()`, `a.redISqr()`
- * `a.redSqrt()` - square root modulo reduction context's prime
- * `a.redInvm()` - modular inverse of the number
- * `a.redNeg()`
- * `a.redPow(b)` - modular exponentiation
-
- ## LICENSE
-
- This software is licensed under the MIT License.
-
- Copyright Fedor Indutny, 2015.
-
- Permission is hereby granted, free of charge, to any person obtaining a
- copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to permit
- persons to whom the Software is furnished to do so, subject to the
- following conditions:
-
- The above copyright notice and this permission notice shall be included
- in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
- NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
- DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
- USE OR OTHER DEALINGS IN THE SOFTWARE.
-
- [0]: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
- [1]: https://en.wikipedia.org/wiki/Mersenne_prime
|