|
|
- /**
- * Supported cipher modes.
- *
- * @author Dave Longley
- *
- * Copyright (c) 2010-2014 Digital Bazaar, Inc.
- */
- var forge = require('./forge');
- require('./util');
-
- forge.cipher = forge.cipher || {};
-
- // supported cipher modes
- var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};
-
- /** Electronic codebook (ECB) (Don't use this; it's not secure) **/
-
- modes.ecb = function(options) {
- options = options || {};
- this.name = 'ECB';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = new Array(this._ints);
- this._outBlock = new Array(this._ints);
- };
-
- modes.ecb.prototype.start = function(options) {};
-
- modes.ecb.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
- return true;
- }
-
- // get next block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = input.getInt32();
- }
-
- // encrypt block
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // write output
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._outBlock[i]);
- }
- };
-
- modes.ecb.prototype.decrypt = function(input, output, finish) {
- // not enough input to decrypt
- if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
- return true;
- }
-
- // get next block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = input.getInt32();
- }
-
- // decrypt block
- this.cipher.decrypt(this._inBlock, this._outBlock);
-
- // write output
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._outBlock[i]);
- }
- };
-
- modes.ecb.prototype.pad = function(input, options) {
- // add PKCS#7 padding to block (each pad byte is the
- // value of the number of pad bytes)
- var padding = (input.length() === this.blockSize ?
- this.blockSize : (this.blockSize - input.length()));
- input.fillWithByte(padding, padding);
- return true;
- };
-
- modes.ecb.prototype.unpad = function(output, options) {
- // check for error: input data not a multiple of blockSize
- if(options.overflow > 0) {
- return false;
- }
-
- // ensure padding byte count is valid
- var len = output.length();
- var count = output.at(len - 1);
- if(count > (this.blockSize << 2)) {
- return false;
- }
-
- // trim off padding bytes
- output.truncate(count);
- return true;
- };
-
- /** Cipher-block Chaining (CBC) **/
-
- modes.cbc = function(options) {
- options = options || {};
- this.name = 'CBC';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = new Array(this._ints);
- this._outBlock = new Array(this._ints);
- };
-
- modes.cbc.prototype.start = function(options) {
- // Note: legacy support for using IV residue (has security flaws)
- // if IV is null, reuse block from previous processing
- if(options.iv === null) {
- // must have a previous block
- if(!this._prev) {
- throw new Error('Invalid IV parameter.');
- }
- this._iv = this._prev.slice(0);
- } else if(!('iv' in options)) {
- throw new Error('Invalid IV parameter.');
- } else {
- // save IV as "previous" block
- this._iv = transformIV(options.iv);
- this._prev = this._iv.slice(0);
- }
- };
-
- modes.cbc.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
- return true;
- }
-
- // get next block
- // CBC XOR's IV (or previous block) with plaintext
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = this._prev[i] ^ input.getInt32();
- }
-
- // encrypt block
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // write output, save previous block
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._outBlock[i]);
- }
- this._prev = this._outBlock;
- };
-
- modes.cbc.prototype.decrypt = function(input, output, finish) {
- // not enough input to decrypt
- if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
- return true;
- }
-
- // get next block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = input.getInt32();
- }
-
- // decrypt block
- this.cipher.decrypt(this._inBlock, this._outBlock);
-
- // write output, save previous ciphered block
- // CBC XOR's IV (or previous block) with ciphertext
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._prev[i] ^ this._outBlock[i]);
- }
- this._prev = this._inBlock.slice(0);
- };
-
- modes.cbc.prototype.pad = function(input, options) {
- // add PKCS#7 padding to block (each pad byte is the
- // value of the number of pad bytes)
- var padding = (input.length() === this.blockSize ?
- this.blockSize : (this.blockSize - input.length()));
- input.fillWithByte(padding, padding);
- return true;
- };
-
- modes.cbc.prototype.unpad = function(output, options) {
- // check for error: input data not a multiple of blockSize
- if(options.overflow > 0) {
- return false;
- }
-
- // ensure padding byte count is valid
- var len = output.length();
- var count = output.at(len - 1);
- if(count > (this.blockSize << 2)) {
- return false;
- }
-
- // trim off padding bytes
- output.truncate(count);
- return true;
- };
-
- /** Cipher feedback (CFB) **/
-
- modes.cfb = function(options) {
- options = options || {};
- this.name = 'CFB';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = null;
- this._outBlock = new Array(this._ints);
- this._partialBlock = new Array(this._ints);
- this._partialOutput = forge.util.createBuffer();
- this._partialBytes = 0;
- };
-
- modes.cfb.prototype.start = function(options) {
- if(!('iv' in options)) {
- throw new Error('Invalid IV parameter.');
- }
- // use IV as first input
- this._iv = transformIV(options.iv);
- this._inBlock = this._iv.slice(0);
- this._partialBytes = 0;
- };
-
- modes.cfb.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- var inputLength = input.length();
- if(inputLength === 0) {
- return true;
- }
-
- // encrypt block
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // handle full block
- if(this._partialBytes === 0 && inputLength >= this.blockSize) {
- // XOR input with output, write input as output
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
- output.putInt32(this._inBlock[i]);
- }
- return;
- }
-
- // handle partial block
- var partialBytes = (this.blockSize - inputLength) % this.blockSize;
- if(partialBytes > 0) {
- partialBytes = this.blockSize - partialBytes;
- }
-
- // XOR input with output, write input as partial output
- this._partialOutput.clear();
- for(var i = 0; i < this._ints; ++i) {
- this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
- this._partialOutput.putInt32(this._partialBlock[i]);
- }
-
- if(partialBytes > 0) {
- // block still incomplete, restore input buffer
- input.read -= this.blockSize;
- } else {
- // block complete, update input block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = this._partialBlock[i];
- }
- }
-
- // skip any previous partial bytes
- if(this._partialBytes > 0) {
- this._partialOutput.getBytes(this._partialBytes);
- }
-
- if(partialBytes > 0 && !finish) {
- output.putBytes(this._partialOutput.getBytes(
- partialBytes - this._partialBytes));
- this._partialBytes = partialBytes;
- return true;
- }
-
- output.putBytes(this._partialOutput.getBytes(
- inputLength - this._partialBytes));
- this._partialBytes = 0;
- };
-
- modes.cfb.prototype.decrypt = function(input, output, finish) {
- // not enough input to decrypt
- var inputLength = input.length();
- if(inputLength === 0) {
- return true;
- }
-
- // encrypt block (CFB always uses encryption mode)
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // handle full block
- if(this._partialBytes === 0 && inputLength >= this.blockSize) {
- // XOR input with output, write input as output
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = input.getInt32();
- output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
- }
- return;
- }
-
- // handle partial block
- var partialBytes = (this.blockSize - inputLength) % this.blockSize;
- if(partialBytes > 0) {
- partialBytes = this.blockSize - partialBytes;
- }
-
- // XOR input with output, write input as partial output
- this._partialOutput.clear();
- for(var i = 0; i < this._ints; ++i) {
- this._partialBlock[i] = input.getInt32();
- this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
- }
-
- if(partialBytes > 0) {
- // block still incomplete, restore input buffer
- input.read -= this.blockSize;
- } else {
- // block complete, update input block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = this._partialBlock[i];
- }
- }
-
- // skip any previous partial bytes
- if(this._partialBytes > 0) {
- this._partialOutput.getBytes(this._partialBytes);
- }
-
- if(partialBytes > 0 && !finish) {
- output.putBytes(this._partialOutput.getBytes(
- partialBytes - this._partialBytes));
- this._partialBytes = partialBytes;
- return true;
- }
-
- output.putBytes(this._partialOutput.getBytes(
- inputLength - this._partialBytes));
- this._partialBytes = 0;
- };
-
- /** Output feedback (OFB) **/
-
- modes.ofb = function(options) {
- options = options || {};
- this.name = 'OFB';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = null;
- this._outBlock = new Array(this._ints);
- this._partialOutput = forge.util.createBuffer();
- this._partialBytes = 0;
- };
-
- modes.ofb.prototype.start = function(options) {
- if(!('iv' in options)) {
- throw new Error('Invalid IV parameter.');
- }
- // use IV as first input
- this._iv = transformIV(options.iv);
- this._inBlock = this._iv.slice(0);
- this._partialBytes = 0;
- };
-
- modes.ofb.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- var inputLength = input.length();
- if(input.length() === 0) {
- return true;
- }
-
- // encrypt block (OFB always uses encryption mode)
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // handle full block
- if(this._partialBytes === 0 && inputLength >= this.blockSize) {
- // XOR input with output and update next input
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(input.getInt32() ^ this._outBlock[i]);
- this._inBlock[i] = this._outBlock[i];
- }
- return;
- }
-
- // handle partial block
- var partialBytes = (this.blockSize - inputLength) % this.blockSize;
- if(partialBytes > 0) {
- partialBytes = this.blockSize - partialBytes;
- }
-
- // XOR input with output
- this._partialOutput.clear();
- for(var i = 0; i < this._ints; ++i) {
- this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
- }
-
- if(partialBytes > 0) {
- // block still incomplete, restore input buffer
- input.read -= this.blockSize;
- } else {
- // block complete, update input block
- for(var i = 0; i < this._ints; ++i) {
- this._inBlock[i] = this._outBlock[i];
- }
- }
-
- // skip any previous partial bytes
- if(this._partialBytes > 0) {
- this._partialOutput.getBytes(this._partialBytes);
- }
-
- if(partialBytes > 0 && !finish) {
- output.putBytes(this._partialOutput.getBytes(
- partialBytes - this._partialBytes));
- this._partialBytes = partialBytes;
- return true;
- }
-
- output.putBytes(this._partialOutput.getBytes(
- inputLength - this._partialBytes));
- this._partialBytes = 0;
- };
-
- modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
-
- /** Counter (CTR) **/
-
- modes.ctr = function(options) {
- options = options || {};
- this.name = 'CTR';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = null;
- this._outBlock = new Array(this._ints);
- this._partialOutput = forge.util.createBuffer();
- this._partialBytes = 0;
- };
-
- modes.ctr.prototype.start = function(options) {
- if(!('iv' in options)) {
- throw new Error('Invalid IV parameter.');
- }
- // use IV as first input
- this._iv = transformIV(options.iv);
- this._inBlock = this._iv.slice(0);
- this._partialBytes = 0;
- };
-
- modes.ctr.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- var inputLength = input.length();
- if(inputLength === 0) {
- return true;
- }
-
- // encrypt block (CTR always uses encryption mode)
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // handle full block
- if(this._partialBytes === 0 && inputLength >= this.blockSize) {
- // XOR input with output
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(input.getInt32() ^ this._outBlock[i]);
- }
- } else {
- // handle partial block
- var partialBytes = (this.blockSize - inputLength) % this.blockSize;
- if(partialBytes > 0) {
- partialBytes = this.blockSize - partialBytes;
- }
-
- // XOR input with output
- this._partialOutput.clear();
- for(var i = 0; i < this._ints; ++i) {
- this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
- }
-
- if(partialBytes > 0) {
- // block still incomplete, restore input buffer
- input.read -= this.blockSize;
- }
-
- // skip any previous partial bytes
- if(this._partialBytes > 0) {
- this._partialOutput.getBytes(this._partialBytes);
- }
-
- if(partialBytes > 0 && !finish) {
- output.putBytes(this._partialOutput.getBytes(
- partialBytes - this._partialBytes));
- this._partialBytes = partialBytes;
- return true;
- }
-
- output.putBytes(this._partialOutput.getBytes(
- inputLength - this._partialBytes));
- this._partialBytes = 0;
- }
-
- // block complete, increment counter (input block)
- inc32(this._inBlock);
- };
-
- modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
-
- /** Galois/Counter Mode (GCM) **/
-
- modes.gcm = function(options) {
- options = options || {};
- this.name = 'GCM';
- this.cipher = options.cipher;
- this.blockSize = options.blockSize || 16;
- this._ints = this.blockSize / 4;
- this._inBlock = new Array(this._ints);
- this._outBlock = new Array(this._ints);
- this._partialOutput = forge.util.createBuffer();
- this._partialBytes = 0;
-
- // R is actually this value concatenated with 120 more zero bits, but
- // we only XOR against R so the other zeros have no effect -- we just
- // apply this value to the first integer in a block
- this._R = 0xE1000000;
- };
-
- modes.gcm.prototype.start = function(options) {
- if(!('iv' in options)) {
- throw new Error('Invalid IV parameter.');
- }
- // ensure IV is a byte buffer
- var iv = forge.util.createBuffer(options.iv);
-
- // no ciphered data processed yet
- this._cipherLength = 0;
-
- // default additional data is none
- var additionalData;
- if('additionalData' in options) {
- additionalData = forge.util.createBuffer(options.additionalData);
- } else {
- additionalData = forge.util.createBuffer();
- }
-
- // default tag length is 128 bits
- if('tagLength' in options) {
- this._tagLength = options.tagLength;
- } else {
- this._tagLength = 128;
- }
-
- // if tag is given, ensure tag matches tag length
- this._tag = null;
- if(options.decrypt) {
- // save tag to check later
- this._tag = forge.util.createBuffer(options.tag).getBytes();
- if(this._tag.length !== (this._tagLength / 8)) {
- throw new Error('Authentication tag does not match tag length.');
- }
- }
-
- // create tmp storage for hash calculation
- this._hashBlock = new Array(this._ints);
-
- // no tag generated yet
- this.tag = null;
-
- // generate hash subkey
- // (apply block cipher to "zero" block)
- this._hashSubkey = new Array(this._ints);
- this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
-
- // generate table M
- // use 4-bit tables (32 component decomposition of a 16 byte value)
- // 8-bit tables take more space and are known to have security
- // vulnerabilities (in native implementations)
- this.componentBits = 4;
- this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
-
- // Note: support IV length different from 96 bits? (only supporting
- // 96 bits is recommended by NIST SP-800-38D)
- // generate J_0
- var ivLength = iv.length();
- if(ivLength === 12) {
- // 96-bit IV
- this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
- } else {
- // IV is NOT 96-bits
- this._j0 = [0, 0, 0, 0];
- while(iv.length() > 0) {
- this._j0 = this.ghash(
- this._hashSubkey, this._j0,
- [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
- }
- this._j0 = this.ghash(
- this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
- }
-
- // generate ICB (initial counter block)
- this._inBlock = this._j0.slice(0);
- inc32(this._inBlock);
- this._partialBytes = 0;
-
- // consume authentication data
- additionalData = forge.util.createBuffer(additionalData);
- // save additional data length as a BE 64-bit number
- this._aDataLength = from64To32(additionalData.length() * 8);
- // pad additional data to 128 bit (16 byte) block size
- var overflow = additionalData.length() % this.blockSize;
- if(overflow) {
- additionalData.fillWithByte(0, this.blockSize - overflow);
- }
- this._s = [0, 0, 0, 0];
- while(additionalData.length() > 0) {
- this._s = this.ghash(this._hashSubkey, this._s, [
- additionalData.getInt32(),
- additionalData.getInt32(),
- additionalData.getInt32(),
- additionalData.getInt32()
- ]);
- }
- };
-
- modes.gcm.prototype.encrypt = function(input, output, finish) {
- // not enough input to encrypt
- var inputLength = input.length();
- if(inputLength === 0) {
- return true;
- }
-
- // encrypt block
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // handle full block
- if(this._partialBytes === 0 && inputLength >= this.blockSize) {
- // XOR input with output
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._outBlock[i] ^= input.getInt32());
- }
- this._cipherLength += this.blockSize;
- } else {
- // handle partial block
- var partialBytes = (this.blockSize - inputLength) % this.blockSize;
- if(partialBytes > 0) {
- partialBytes = this.blockSize - partialBytes;
- }
-
- // XOR input with output
- this._partialOutput.clear();
- for(var i = 0; i < this._ints; ++i) {
- this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
- }
-
- if(partialBytes <= 0 || finish) {
- // handle overflow prior to hashing
- if(finish) {
- // get block overflow
- var overflow = inputLength % this.blockSize;
- this._cipherLength += overflow;
- // truncate for hash function
- this._partialOutput.truncate(this.blockSize - overflow);
- } else {
- this._cipherLength += this.blockSize;
- }
-
- // get output block for hashing
- for(var i = 0; i < this._ints; ++i) {
- this._outBlock[i] = this._partialOutput.getInt32();
- }
- this._partialOutput.read -= this.blockSize;
- }
-
- // skip any previous partial bytes
- if(this._partialBytes > 0) {
- this._partialOutput.getBytes(this._partialBytes);
- }
-
- if(partialBytes > 0 && !finish) {
- // block still incomplete, restore input buffer, get partial output,
- // and return early
- input.read -= this.blockSize;
- output.putBytes(this._partialOutput.getBytes(
- partialBytes - this._partialBytes));
- this._partialBytes = partialBytes;
- return true;
- }
-
- output.putBytes(this._partialOutput.getBytes(
- inputLength - this._partialBytes));
- this._partialBytes = 0;
- }
-
- // update hash block S
- this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
-
- // increment counter (input block)
- inc32(this._inBlock);
- };
-
- modes.gcm.prototype.decrypt = function(input, output, finish) {
- // not enough input to decrypt
- var inputLength = input.length();
- if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
- return true;
- }
-
- // encrypt block (GCM always uses encryption mode)
- this.cipher.encrypt(this._inBlock, this._outBlock);
-
- // increment counter (input block)
- inc32(this._inBlock);
-
- // update hash block S
- this._hashBlock[0] = input.getInt32();
- this._hashBlock[1] = input.getInt32();
- this._hashBlock[2] = input.getInt32();
- this._hashBlock[3] = input.getInt32();
- this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
-
- // XOR hash input with output
- for(var i = 0; i < this._ints; ++i) {
- output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
- }
-
- // increment cipher data length
- if(inputLength < this.blockSize) {
- this._cipherLength += inputLength % this.blockSize;
- } else {
- this._cipherLength += this.blockSize;
- }
- };
-
- modes.gcm.prototype.afterFinish = function(output, options) {
- var rval = true;
-
- // handle overflow
- if(options.decrypt && options.overflow) {
- output.truncate(this.blockSize - options.overflow);
- }
-
- // handle authentication tag
- this.tag = forge.util.createBuffer();
-
- // concatenate additional data length with cipher length
- var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
-
- // include lengths in hash
- this._s = this.ghash(this._hashSubkey, this._s, lengths);
-
- // do GCTR(J_0, S)
- var tag = [];
- this.cipher.encrypt(this._j0, tag);
- for(var i = 0; i < this._ints; ++i) {
- this.tag.putInt32(this._s[i] ^ tag[i]);
- }
-
- // trim tag to length
- this.tag.truncate(this.tag.length() % (this._tagLength / 8));
-
- // check authentication tag
- if(options.decrypt && this.tag.bytes() !== this._tag) {
- rval = false;
- }
-
- return rval;
- };
-
- /**
- * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
- * field multiplication. The field, GF(2^128), is defined by the polynomial:
- *
- * x^128 + x^7 + x^2 + x + 1
- *
- * Which is represented in little-endian binary form as: 11100001 (0xe1). When
- * the value of a coefficient is 1, a bit is set. The value R, is the
- * concatenation of this value and 120 zero bits, yielding a 128-bit value
- * which matches the block size.
- *
- * This function will multiply two elements (vectors of bytes), X and Y, in
- * the field GF(2^128). The result is initialized to zero. For each bit of
- * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
- * by the current value of Y. For each bit, the value of Y will be raised by
- * a power of x (multiplied by the polynomial x). This can be achieved by
- * shifting Y once to the right. If the current value of Y, prior to being
- * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
- * Otherwise, we must divide by R after shifting to find the remainder.
- *
- * @param x the first block to multiply by the second.
- * @param y the second block to multiply by the first.
- *
- * @return the block result of the multiplication.
- */
- modes.gcm.prototype.multiply = function(x, y) {
- var z_i = [0, 0, 0, 0];
- var v_i = y.slice(0);
-
- // calculate Z_128 (block has 128 bits)
- for(var i = 0; i < 128; ++i) {
- // if x_i is 0, Z_{i+1} = Z_i (unchanged)
- // else Z_{i+1} = Z_i ^ V_i
- // get x_i by finding 32-bit int position, then left shift 1 by remainder
- var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
- if(x_i) {
- z_i[0] ^= v_i[0];
- z_i[1] ^= v_i[1];
- z_i[2] ^= v_i[2];
- z_i[3] ^= v_i[3];
- }
-
- // if LSB(V_i) is 1, V_i = V_i >> 1
- // else V_i = (V_i >> 1) ^ R
- this.pow(v_i, v_i);
- }
-
- return z_i;
- };
-
- modes.gcm.prototype.pow = function(x, out) {
- // if LSB(x) is 1, x = x >>> 1
- // else x = (x >>> 1) ^ R
- var lsb = x[3] & 1;
-
- // always do x >>> 1:
- // starting with the rightmost integer, shift each integer to the right
- // one bit, pulling in the bit from the integer to the left as its top
- // most bit (do this for the last 3 integers)
- for(var i = 3; i > 0; --i) {
- out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
- }
- // shift the first integer normally
- out[0] = x[0] >>> 1;
-
- // if lsb was not set, then polynomial had a degree of 127 and doesn't
- // need to divided; otherwise, XOR with R to find the remainder; we only
- // need to XOR the first integer since R technically ends w/120 zero bits
- if(lsb) {
- out[0] ^= this._R;
- }
- };
-
- modes.gcm.prototype.tableMultiply = function(x) {
- // assumes 4-bit tables are used
- var z = [0, 0, 0, 0];
- for(var i = 0; i < 32; ++i) {
- var idx = (i / 8) | 0;
- var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
- var ah = this._m[i][x_i];
- z[0] ^= ah[0];
- z[1] ^= ah[1];
- z[2] ^= ah[2];
- z[3] ^= ah[3];
- }
- return z;
- };
-
- /**
- * A continuing version of the GHASH algorithm that operates on a single
- * block. The hash block, last hash value (Ym) and the new block to hash
- * are given.
- *
- * @param h the hash block.
- * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
- * @param x the block to hash.
- *
- * @return the hashed value (Ym).
- */
- modes.gcm.prototype.ghash = function(h, y, x) {
- y[0] ^= x[0];
- y[1] ^= x[1];
- y[2] ^= x[2];
- y[3] ^= x[3];
- return this.tableMultiply(y);
- //return this.multiply(y, h);
- };
-
- /**
- * Precomputes a table for multiplying against the hash subkey. This
- * mechanism provides a substantial speed increase over multiplication
- * performed without a table. The table-based multiplication this table is
- * for solves X * H by multiplying each component of X by H and then
- * composing the results together using XOR.
- *
- * This function can be used to generate tables with different bit sizes
- * for the components, however, this implementation assumes there are
- * 32 components of X (which is a 16 byte vector), therefore each component
- * takes 4-bits (so the table is constructed with bits=4).
- *
- * @param h the hash subkey.
- * @param bits the bit size for a component.
- */
- modes.gcm.prototype.generateHashTable = function(h, bits) {
- // TODO: There are further optimizations that would use only the
- // first table M_0 (or some variant) along with a remainder table;
- // this can be explored in the future
- var multiplier = 8 / bits;
- var perInt = 4 * multiplier;
- var size = 16 * multiplier;
- var m = new Array(size);
- for(var i = 0; i < size; ++i) {
- var tmp = [0, 0, 0, 0];
- var idx = (i / perInt) | 0;
- var shft = ((perInt - 1 - (i % perInt)) * bits);
- tmp[idx] = (1 << (bits - 1)) << shft;
- m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
- }
- return m;
- };
-
- /**
- * Generates a table for multiplying against the hash subkey for one
- * particular component (out of all possible component values).
- *
- * @param mid the pre-multiplied value for the middle key of the table.
- * @param bits the bit size for a component.
- */
- modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
- // compute the table quickly by minimizing the number of
- // POW operations -- they only need to be performed for powers of 2,
- // all other entries can be composed from those powers using XOR
- var size = 1 << bits;
- var half = size >>> 1;
- var m = new Array(size);
- m[half] = mid.slice(0);
- var i = half >>> 1;
- while(i > 0) {
- // raise m0[2 * i] and store in m0[i]
- this.pow(m[2 * i], m[i] = []);
- i >>= 1;
- }
- i = 2;
- while(i < half) {
- for(var j = 1; j < i; ++j) {
- var m_i = m[i];
- var m_j = m[j];
- m[i + j] = [
- m_i[0] ^ m_j[0],
- m_i[1] ^ m_j[1],
- m_i[2] ^ m_j[2],
- m_i[3] ^ m_j[3]
- ];
- }
- i *= 2;
- }
- m[0] = [0, 0, 0, 0];
- /* Note: We could avoid storing these by doing composition during multiply
- calculate top half using composition by speed is preferred. */
- for(i = half + 1; i < size; ++i) {
- var c = m[i ^ half];
- m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
- }
- return m;
- };
-
- /** Utility functions */
-
- function transformIV(iv) {
- if(typeof iv === 'string') {
- // convert iv string into byte buffer
- iv = forge.util.createBuffer(iv);
- }
-
- if(forge.util.isArray(iv) && iv.length > 4) {
- // convert iv byte array into byte buffer
- var tmp = iv;
- iv = forge.util.createBuffer();
- for(var i = 0; i < tmp.length; ++i) {
- iv.putByte(tmp[i]);
- }
- }
- if(!forge.util.isArray(iv)) {
- // convert iv byte buffer into 32-bit integer array
- iv = [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()];
- }
-
- return iv;
- }
-
- function inc32(block) {
- // increment last 32 bits of block only
- block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
- }
-
- function from64To32(num) {
- // convert 64-bit number to two BE Int32s
- return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
- }
|