|
|
- /**
- * RSA Key Generation Worker.
- *
- * @author Dave Longley
- *
- * Copyright (c) 2013 Digital Bazaar, Inc.
- */
- // worker is built using CommonJS syntax to include all code in one worker file
- //importScripts('jsbn.js');
- var forge = require('./forge');
- require('./jsbn');
-
- // prime constants
- var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
- var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
-
- var BigInteger = forge.jsbn.BigInteger;
- var BIG_TWO = new BigInteger(null);
- BIG_TWO.fromInt(2);
-
- self.addEventListener('message', function(e) {
- var result = findPrime(e.data);
- self.postMessage(result);
- });
-
- // start receiving ranges to check
- self.postMessage({found: false});
-
- // primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
- var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
-
- function findPrime(data) {
- // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
-
- // create BigInteger from given random bytes
- var num = new BigInteger(data.hex, 16);
-
- /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
- number we are given is always aligned at 30k + 1. Each time the number is
- determined not to be prime we add to get to the next 'i', eg: if the number
- was at 30k + 1 we add 6. */
- var deltaIdx = 0;
-
- // find nearest prime
- var workLoad = data.workLoad;
- for(var i = 0; i < workLoad; ++i) {
- // do primality test
- if(isProbablePrime(num)) {
- return {found: true, prime: num.toString(16)};
- }
- // get next potential prime
- num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
- }
-
- return {found: false};
- }
-
- function isProbablePrime(n) {
- // divide by low primes, ignore even checks, etc (n alread aligned properly)
- var i = 1;
- while(i < LOW_PRIMES.length) {
- var m = LOW_PRIMES[i];
- var j = i + 1;
- while(j < LOW_PRIMES.length && m < LP_LIMIT) {
- m *= LOW_PRIMES[j++];
- }
- m = n.modInt(m);
- while(i < j) {
- if(m % LOW_PRIMES[i++] === 0) {
- return false;
- }
- }
- }
- return runMillerRabin(n);
- }
-
- // HAC 4.24, Miller-Rabin
- function runMillerRabin(n) {
- // n1 = n - 1
- var n1 = n.subtract(BigInteger.ONE);
-
- // get s and d such that n1 = 2^s * d
- var s = n1.getLowestSetBit();
- if(s <= 0) {
- return false;
- }
- var d = n1.shiftRight(s);
-
- var k = _getMillerRabinTests(n.bitLength());
- var prng = getPrng();
- var a;
- for(var i = 0; i < k; ++i) {
- // select witness 'a' at random from between 1 and n - 1
- do {
- a = new BigInteger(n.bitLength(), prng);
- } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
-
- /* See if 'a' is a composite witness. */
-
- // x = a^d mod n
- var x = a.modPow(d, n);
-
- // probably prime
- if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
- continue;
- }
-
- var j = s;
- while(--j) {
- // x = x^2 mod a
- x = x.modPowInt(2, n);
-
- // 'n' is composite because no previous x == -1 mod n
- if(x.compareTo(BigInteger.ONE) === 0) {
- return false;
- }
- // x == -1 mod n, so probably prime
- if(x.compareTo(n1) === 0) {
- break;
- }
- }
-
- // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
- if(j === 0) {
- return false;
- }
- }
-
- return true;
- }
-
- // get pseudo random number generator
- function getPrng() {
- // create prng with api that matches BigInteger secure random
- return {
- // x is an array to fill with bytes
- nextBytes: function(x) {
- for(var i = 0; i < x.length; ++i) {
- x[i] = Math.floor(Math.random() * 0xFF);
- }
- }
- };
- }
-
- /**
- * Returns the required number of Miller-Rabin tests to generate a
- * prime with an error probability of (1/2)^80.
- *
- * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
- *
- * @param bits the bit size.
- *
- * @return the required number of iterations.
- */
- function _getMillerRabinTests(bits) {
- if(bits <= 100) return 27;
- if(bits <= 150) return 18;
- if(bits <= 200) return 15;
- if(bits <= 250) return 12;
- if(bits <= 300) return 9;
- if(bits <= 350) return 8;
- if(bits <= 400) return 7;
- if(bits <= 500) return 6;
- if(bits <= 600) return 5;
- if(bits <= 800) return 4;
- if(bits <= 1250) return 3;
- return 2;
- }
|